
1

Slide 1-Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter

Introduction to
Computers and
Programming

1

2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Why Program?1.1

Slide 4

What is a Computer?

A computer is a device that under the direction and
control of a program performs four basic functions:

input

output

processing

storage.
Copyright © 2007 Spelman College Computer Science Department

3

Slide 5

What is Computer Science?

Computer science is the study of algorithms,
including

Their formal and mathematical properties
Their hardware realizations
Their linguistic realizations
Their applications

Copyright © 2007 Spelman College Computer Science Department

Slide 6

What is an Algorithm?

An algorithm is a well-ordered collection of
unambiguous and effectively computable
operations that, when executed, produces a
result and halts in a finite amount of time.

Copyright © 2007 Spelman College Computer Science Department

4

Slide 7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Why Program?
Computer – programmable machine designed to follow

instructions
Program – instructions in computer memory to make it do

something
Programmer – person who writes instructions (programs) to

make computer perform a task

SO, without programmers, no programs; without programs,
a computer cannot do anything

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Computer Systems:
Hardware and
Software

1.2

5

Slide 9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Main Hardware Component
Categories:

1. Central Processing Unit (CPU)
2. Main Memory
3. Secondary Memory / Storage
4. Input Devices
5. Output Devices

Slide 10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Main Hardware Component
Categories

Figure 1-1

6

Slide 11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Central Processing Unit (CPU)

Comprised of:
Control Unit

Retrieves and decodes program instructions
Coordinates activities of all other parts of computer

Arithmetic & Logic Unit
Hardware optimized for high-speed numeric

calculation
Hardware designed for true/false, yes/no decisions

Slide 12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

CPU Organization

Figure 1-2

7

Slide 13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Main Memory

It is volatile. Main memory is erased when program
terminates or computer is turned off
Also called Random Access Memory (RAM)
Organized as follows:

bit: smallest piece of memory. Has values 0 (off,
false) or 1 (on, true)
byte: 8 consecutive bits. Bytes have addresses.

Addresses – Each byte in memory is identified by a
unique number known as an address.

Slide 14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Main Memory

In Figure 1-3, the number 149 is stored in the byte with the
address 16, and the number 72 is stored at address 23.

8

Slide 15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Secondary Storage

Non-volatile: data retained when program is not
running or computer is turned off
Comes in a variety of media:

magnetic: floppy disk, zip disk, hard drive
optical: CD-ROM
Flash drives, connected to the USB port

Slide 16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Input Devices

Devices that send information to the computer
from outside
Many devices can provide input:

Keyboard, mouse, scanner, digital camera,
microphone
Disk drives and CD-ROM

9

Slide 17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Output Devices

Output is information sent from a computer
program to the outside world.
The output is sent to an output device
Many devices can be used for output:

Computer monitor and printer
Floppy, zip disk drives
Writable CD drives

Slide 18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Software –
Programs That Run on a Computer

Categories of software:
Operating system: programs that manage the
computer hardware and the programs that run
on them. Examples: Windows, UNIX, Linux
Application software: programs that provide
services to the user. Examples : word
processing, games, programs to solve specific
problems

10

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programs and
Programming
Languages

1.3

Slide 20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programs and
Programming Languages

A program is a set of instructions that the
computer follows to perform a task

We start with an algorithm, which is a set of well-
defined steps.

11

Slide 21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example Algorithm for
Calculating Gross Pay

Slide 22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Machine Language

Although the previous algorithm defines the steps
for calculating the gross pay, it is not ready to be
executed on the computer.
The computer only executes machine language
instructions.

12

Slide 23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Machine Language

Machine language instructions are binary
numbers, such as

1011010000000101

Rather than writing programs in machine
language, programmers use programming
languages.

Slide 24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programs and
Programming Languages

Types of languages:

Low-level: used for
communication with computer
hardware directly. Often written
in binary machine code (0’s/1’s)
directly.

High-level: closer to human
language

13

Slide 25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Some Well-Known Programming
Languages

Slide 26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

From a High-level Program to an
Executable File

a) Create file containing the program with a text editor.
b) Run preprocessor to convert source file directives to source code

program statements.
c) Run compiler to convert source program into machine instructions.
d) Run linker to connect hardware-specific code to machine

instructions, producing an executable file.
Steps b–d are often performed by a single command or button
click.
Errors detected at any step will prevent execution of following
steps.

14

Slide 27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

From a High-level Program to an
Executable File

Source Code

Preprocessor

Modified
Source Code

Compiler

Object Code

Linker

Executable Code

Slide 28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Integrated Development
Environments (IDEs)

An integrated development environment, or IDE,
combine all the tools needed to write, compile,
and debug a program into a single software
application.
Examples are Microsoft Visual C++, Borland C++
Builder, CodeWarrior, etc.

15

Slide 29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Integrated Development
Environments (IDEs)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

What Is a
Program Made Of?1.4

16

Slide 31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

What Is a Program Made Of?

Common elements in programming languages:
Key Words
Programmer-Defined Identifiers
Operators
Punctuation
Syntax

Slide 32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Program 1-1
1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

17

Slide 33Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Key Words

Also known as reserved words
Have a special meaning in C++
Can not be used for any other purpose
Key words in the Program 1-1: using,
namespace, int, main, double, and return.

Slide 34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Key Words

18

Slide 35Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programmer-Defined Identifiers

Names made up by the programmer
Not part of the C++ language
Used to represent various things: variables
(memory locations), functions, etc.
In Program 1-1: hours, rate, and pay.

Slide 36Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Programmer-Defined Identifiers

19

Slide 37Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Operators

Used to perform operations on data
Many types of operators:

Arithmetic - ex: +,-,*,/
Assignment – ex: =

Some operators in Program1-1:
<< >> = *

Slide 38Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Operators
1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

20

Slide 39Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Punctuation

Characters that mark the end of a statement, or
that separate items in a list
In Program 1-1: , and ;

Slide 40Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Punctuation

21

Slide 41Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Syntax

The rules of grammar that must be followed when
writing a program

Controls the use of key words, operators,
programmer-defined symbols, and punctuation

Slide 42Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variables

A variable is a named storage location in the
computer’s memory for holding a piece of
data.
In Program 1-1 we used three variables:

The hours variable was used to hold the
hours worked
The rate variable was used to hold the
pay rate
The pay variable was used to hold the
gross pay

22

Slide 43Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Definitions
To create a variable in a program you must write a
variable definition (also called a variable declaration)

Here is the statement from Program 1-1 that defines the
variables:

double hours, rate, pay;

Slide 44Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Definitions

There are many different types of data, which you
will learn about in this course.

A variable holds a specific type of data.

The variable definition specifies the type of data a
variable can hold, and the variable name.

23

Slide 45Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Definitions

Once again, line 7 from Program 1-1:

double hours, rate, pay;

The word double specifies that the variables can
hold double-precision floating point numbers.
(You will learn more about that in Chapter 2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Input, Processing, and
Output1.5

24

Slide 47Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Input, Processing, and Output

Three steps that a program typically performs:
1) Gather input data:

from keyboard
from files on disk drives

2) Process the input data
3) Display the results as output:

send it to the screen
write to a file

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Programming
Process1.6

25

Slide 49Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Programming Process

Slide 50Copyright © 2007 Spelman College Computer Science Department

Algorithm: Formal Definition

(noun) a well-ordered collection of unambiguous
and effectively computable operations that, when
executed, produces a result and halts in a finite
amount of time.

Compared with the informal definition:

(noun) A procedure for solving a mathematical problem in a finite number
of steps that frequently involves repetition of an operation

26

Slide 51Copyright © 2007 Spelman College Computer Science Department

Why algorithms?
• Reason #1: If we can specify an algorithm to solve a

problem, we can automate its solution
• Reason #2: Algorithmic solutions can be encoded into an

appropriate language and given to the computing agent

The agent can be a person, desktop
system, appliance, robot, etc.
The agent does not need to understand

Creative processes that went into discovery of
solution
Principles and concepts that underlie the
problem

• Reason #3: Algorithmic solutions can be analyzed for
correctness and efficiency

Slide 52Copyright © 2007 Spelman College Computer Science Department

Representing Algorithms
Natural language

Language spoken and written in everyday life
Examples: English, Spanish, Arabic, etc.
Problems with using natural language for
algorithms

Verbose
Imprecise
Relies on context and experiences
to give precise meaning to a word or phrase

27

Slide 53Copyright © 2007 Spelman College Computer Science Department

Addition Algorithm in English

Slide 54Copyright © 2007 Spelman College Computer Science Department

Representing Algorithms
High-level programming language

Examples: C++, Java

Problem with using a high-level programming
language for algorithms

During the initial phases of design, we are forced to
deal with detailed language issues

28

Slide 55Copyright © 2007 Spelman College Computer Science Department

A C++ Program for Addition

Slide 56Copyright © 2007 Spelman College Computer Science Department

Characteristics of Pseudocode
English language constructs modeled to look like statements
available in most programming languages

Easy to Learn
Steps presented in a structured manner (numbered, indented,
etc.)

Easy to follow
No fixed syntax for most operations is required

Less restrictive than a programming language
Less ambiguous and more readable than natural language
Emphasis is on process, not notation

The logic of the solution is what to focus on, not choice of “words”
Can be easily translated into a programming language

29

Slide 57Copyright © 2007 Spelman College Computer Science Department

Pseudocode Summary

Slide 58Copyright © 2007 Spelman College Computer Science Department

Classes of Operations
Types of algorithmic operations

Sequential Operations : performed in step-by-step fashion
Setting Values

Mathematical Expressions

Input/Output Statements

Conditional Operations: allows your logic to have different paths
Decision making steps

If “something” then do “it” otherwise do “the other thing”

Iterative/Repetitive Operations
Used for repeating a group of operations over and over

An algorithm is a collection of operations these classes

30

Slide 59Copyright © 2007 Spelman College Computer Science Department

Sequential Operations
Computation operations

Example
Set the value of variable to text/arithmetic expression

Set the value of Name to “Charles”

Set the value of Age to 17+5

Input operations
To receive data values from the outside world

Example
Get a value for r, the radius of the circle

Output operations
To send results to the outside world for display

Example
Print the value of Area

Slide 60Copyright © 2007 Spelman College Computer Science Department

Algorithm: Average Miles Per Gallon
1. Get values for gallons used, starting mileage, and

ending mileage
2. Set value of distance driven to (ending mileage -

starting mileage)
3. Set value of average miles per gallon to (distance

driven / gallons used)
4. Print the value of average miles per gallon
5. Stop

What are the variables?

What are the input variables?

What are the output variables?

31

Slide 61Copyright © 2007 Spelman College Computer Science Department

Control Operations
Control operations change the path of execution

The path of execution is the list of steps executed from
beginning to end

In a sequential algorithm, every step is executed in the
listed order from start to finish

The execution path of the previous algorithm would be:
Steps 1, 2, 3, 4, and 5

Classes of Control Operations
Conditional operations

Create multiple execution paths

Iterative operations
Repeat an execution path (subpath) more than once

Slide 62Copyright © 2007 Spelman College Computer Science Department

Conditional Operations

• Conditional operations

– Ask questions and choose alternative
actions based on the answers

– Example
1. if x is greater than 25 then
2. print x
3. else
4. print x * 100
5. Stop

• Paths are: 1,2,5 and 1,3,4,5

X > 25

Print X

Print X*100

Stop

Start

True

False

32

Slide 63Copyright © 2007 Spelman College Computer Science Department

Algorithm: Average Miles Per Gallon
(Version 2)
1. Get values for gallons used, starting mileage, and ending

mileage
2. Set value of distance driven to (ending mileage -

starting mileage)
3. Set value of average miles per gallon to (distance driven

/ gallons used)
4. Print the value of average miles per gallon
5. if average miles per gallon is greater than 25.0 then
6. Print the message “You are getting good gas mileage”
7. Else
8. Print the message “You are NOT getting good gas

mileage”
9. STOP

How many paths does this algorithm have? What are they?

Slide 64Copyright © 2007 Spelman College Computer Science Department

Iterative/Repetitive Operations
• Iterative/Repetitive operations

– Perform “looping” behavior; repeating actions until a
continuation condition becomes false

– Sometime called a Loop
– Examples

1.set j to 5
2.while j > 0 do
3. set s to s * 2
4. set j to j - 1
5.end while
6.stop

– Execution Path is 1, 2, 3,4,3,4,3,4…5,6 until J <= 0
– Continuation condition

•Condition that determines if the loop keeps going

– Loop body
•The statements that are repeated

Start

Stop

Set J = 5

J > 0

Set J = J - 1

Set S = S*2

False

33

Slide 65Copyright © 2007 Spelman College Computer Science Department

Algorithm: Average Miles Per Gallon
(Version 3)
1. Set the value of response to Yes
2. While response is equal to Yes do steps 3 - 12

3. Get values for gallons used, starting mileage, and ending
mileage

4. Set value of distance driven to (ending mileage - starting
mileage)

5. Set value of average miles per gallon to (distance driven /
gallons used)

6. Print the value of average miles per gallon

7. if average miles per gallon is greater than 25.0 then
8. Print the message “You are getting good gas mileage”
9. Else
10. Print the message “You are NOT getting good gas

mileage”

11. Print the message “Do you want to do this again? (enter yes or
no)”

12. Get value of response from the user

13. STOP

Slide 66Copyright © 2007 Spelman College Computer Science Department

The Programming Process Recap

34

Slide 67Copyright © 2007 Spelman College Computer Science Department

An Example
Write an algorithm that gets N numbers, computes the
average of those N numbers, and prints out the average.

Analysis
What are the inputs?
What are the outputs?
What are the formulas/processes you have to do to solve this
by hand?
Are there any special conditions?

Design
Write the algorithm

Test
Perform table trace

Implement in C++ (by the professor)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Procedural and
Object-Oriented
Programming

1.7

35

Slide 69Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Procedural and Object-Oriented
Programming

Procedural programming: focus is on the process.
Procedures/functions are written to process data.
Object-Oriented programming: focus is on
objects, which contain data and the means to
manipulate the data. Messages sent to objects to
perform operations.

Slide 70Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Lets Construct Solutions

1) Write an algorithm that computes the area of a
circle.

2) Write an algorithm that takes the prices of 3
items and computes the subtotal and total with
8% tax.

3) Write an algorithm that finds the maximum of 3
input values.

4) Write an algorithm that that can find the
maximum of N values.

5) Write an algorithm that finds the sum and
product of N values.

